2 research outputs found

    Lectures on Designing Screening Experiments

    Full text link
    Designing Screening Experiments (DSE) is a class of information - theoretical models for multiple - access channels (MAC). We discuss the combinatorial model of DSE called a disjunct channel model. This model is the most important for applications and closely connected with the superimposed code concept. We give a detailed survey of lower and upper bounds on the rate of superimposed codes. The best known constructions of superimposed codes are considered in paper. We also discuss the development of these codes (non-adaptive pooling designs) intended for the clone - library screening problem. We obtain lower and upper bounds on the rate of binary codes for the combinatorial model of DSE called an adder channel model. We also consider the concept of universal decoding for the probabilistic DSE model called a symmetric model of DSE.Comment: 66 page

    Exordium for DNA Codes

    No full text
    We describe how deletion-correcting codes may be enhanced to yield codes with double-strand DNA-sequence codewords. This enhancement involves abstractions of the pertinent aspects of DNA; it nevertheless ensures specificity of binding for all pairs of single strands derived from its codewords-the key desideratum of DNA codes- i.e. with binding feasible only between reverse complementary strands. We defer discussing the combinatorial-optimization superincumbencies of code construction. Generalization of deletion similarity to an optimal sequence-alignment score could readily effect advantageous improvements (Kaderali, Master's Thesis, Informatics, U. Köln, 2001) but would render the combinatorics opaque. We mention motivating applications of DNA codes
    corecore